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Kim-Webster-Curry (2012) comparison of the bias of the
coupled Syst4 (ECMWF) and the CFS-v2 (NCEP)
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Both models have large biases, but they are also quite similar!




Classic Data Assimilation: For NWP we need to
improve observations, analysis scheme and model
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New Data Assimilation: We can also use DA
to improve observations and model

OBSERVATIONS 6 hr forecast ]

*

ANALYSIS

<MODEL
—>[ FORECASTS ]




1) How to best do coupled ocean-atmosphere
data assimilation?

Should we do coupled data assimilation?
Yes! e.g., see Tamara Singleton thesis

Current approaches assimilate separately the ocean
and the atmosphere, and then couple the models
(weak coupling)

We proposed strong coupling: the ocean sees the
atmospheric observations, and the atmosphere
sees the ocean observations (Sluka, Penny, Miyoshi)



Data Assimilation: STANDARD (WEAK) COUPLING

S. Zhang et al.: GFDL Coupled Ocean-Atm EnKF
GHG + NA fadiative forcing

Pioneering!
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Our strongly coupled LETKF assimilation
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Impact of strong coupling of the ocean-
atmosphere LETKF (Sluka et al, submitted)

 SPEEDY-NEMO coupled model. Perfect model OSSE.
e Standard (weak) coupling as a control

e Test strong coupling: the ocean sees the atmospheric
observations and the atmosphere sees the ocean

observations
Experiments: 1) Only atmos. obs.

* CONTROL: Weakly coupled data assimilation: Only the
atmosphere assimilates atmos. observations.

e Strongly coupled DA: ocean also assimilates
atmospheric observations



Results: Red means STRONG DA is better!
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Results: Red means STRONG DA is better!

Sluka et al., under revision, GRL

In turn, with Strongly Coupled DA, the ocean improved by assimilating
atmospheric observations improves the atmosphere!
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It’s great that EMC plans to do strongly coupled
DA for all models, not just the ocean!

They should improve each other!
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How can we estimate and correct model bias?

* The Analysis is the best estimate of the Truth.

* The First Guess (6hr forecast) contains the initial
forecast errors (before they grow nonlinearly).

* Analysis - First Guess = Analysis Increments (Al) =
- Initial (linear) model errors.

* The time average of Al is the best estimate of the
error growth due to model bias in 6 hr.

e Danforth, Kalnay and Miyoshi (DKM-2007) estimated
the 6hr errors of the SPEEDY model.

e Estimated the average SPEEDY model error (bias) by
averaging over several years the 6 hour forecast
(started from reanalysis R1) minus the reanalysis.



DKM-2007 results

* Estimated the monthly mean 6hr forecast bias

* Corrected the model by adding (—bias/6hr) to each
variable time derivative, at each grid point.

Results

* The bias correction after 3 or 5 days was the same as
the best a posteriori bias correction.

e But the random errors were smaller.

e The dominant EOFs of the 6hr debiased forecast errors
were the errors in the diurnal cycle.

* |t was possible to estimate the systematic errors for
anomalies (e.g., ENSO, lows over land or over ocean)



The model corrected online did at least as well
as the model statistically corrected off-line

L24805 DANFORTH AND KALNAY: NONLINEAR ERROR GROWTH L.24805
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And the random errors were significantly smaller
than in the run without bias correction!

Original Model Online Correction
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How to find the diurnal cycle model errors using EOFs

from a Reanalysis
(Danforth et al., 2007)

Estimated the average SPEEDY model error (bias) by
averaging over several years the 6 hour forecast
(started from reanalysis) minus the reanalysis.

Then they computed the EOFs of the anomaly in the

model error, and found two dominant EOFs
representing the model error in representing the

diurnal cycle:
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Implications for improving the model bias
I amanemmmeemem—eees

e The DKM2007 method gave very good results with the SPEEDY
model, using R1 as an approximation of the true atmosphere.

* The -bias/6hr was added to the SPEEDY time derivatives (u,v,T,p,).

* This corrected the bias, getting similar or better results than an a
posteriori bias correction! In addition, random forecast errors were
also reduced.

* |t was also used to improve the diurnal cycle and to find the state
dependent systematic errors (e.g., during an El Nifo).

* It can be tried on the GFS (or the CFS!) taking advantage of the
Analysis Increments, i.e., the difference between the Analysis and
the Forecast.

e Dr. Fanglin Yang (NCEP) very kindly provided us (Kriti Bhargava, Jim
Carton and me) with 2014, 2013, and 2012 Analyses and Forecasts.



First results: 2014 Analyses, Forecasts and Als

S u rfa ce Te m pe rat ure Temperature January(above) and July (below) monthly mean(K) at Omb J anua ry

Analysis Forecast Analy5|s Increament
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T.is too low over continents in the summer, too high in the winter.



Analysis Increments: 2012, 2013, 2014

1000 m b Te m pe rat ure Temperature January(above) and July (below) monthly mean(K) at 1000mb Ja nua ry
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Analysis Increments: 2012, 2013, 2014

1000 m b V_WI n d V-wind January(above) and July (below) monthly mean(m/s) at 1000mb Ja n u a ry

Al 2013
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How do we proceed to reduce model bias?
I |

* Check the robustness of the monthly average Al (2014 vs.
2013 vs. 2012, July vs. August), earlier years. v/

e Seasonally filter with 2-3 Fourier time components.

* Perform exploratory low resolution (T254) experiments
correcting the perceived model bias by adding Al/6hr to
each variable time derivative.

* Test the impact on the forecast skill.

* Explore the diurnal cycle of the Al (error correction). Test if
the diurnal cycle errors can be reduced.

* If successful, the Al bias correction will also guide the
development of the physical parameterizations.
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* If successful, the Al bias correction will also guide the
development of the physical parameterizations

THANKS!



